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The small strain (below yielding) tensile loading-unloading tests were carried out on the
low-density polyethylene (LDPE) and polypropylene (PP) at low strain rate and room
temperature. The experiments unambiguously indicate to a remarkable decrease in
residual strains in comparison with those predicted by conventional viscoelastic models.
These deviations cannot be explained without taking into account structural
transformations of semi-crystalline polymers. As long as small deformations cannot result
in significant change in content and texture of crystalline and amorphous components, it
was assumed that such transformations should include disintegration of connectivity in
crystallite clusters. This structural rearrangement is supposed to be caused by the
strain-induced decrystallization of narrow (and thus highly stressed) “bridges” connecting
domains of conjugated crystallites or inside crystallites. A simple 1D modelling of the
deformation processes supports this expectation. The disconnection in polymer
morphology is simulated by small portions of amorphous ligaments appearing between
neighbouring crystallites in the course of deformation. In spite of simplicity of the model a
precise fitting of the stress-strain diagram is obtained along with small variations in
structural and material characteristics (crystallinity degree, effective rigidity and plastic
ability) of the concerned polymers. C© 2004 Kluwer Academic Publishers

1. Introduction
The modern knowledge of large-strain behaviour of
materials excludes any doubts in the fact that it is ac-
companied and influenced by structural evolution [1–
3]. This general phenomenon becomes much pointed
for polymer materials, especially semi-crystalline poly-
mers (SCP), characterized by greatly intricate morphol-
ogy (see, for example, [4–9]). Specifically, the large-
strain drawing of SCP causes orientation of crystallites
as well as of macromolecules of amorphous phase down
the drawing direction and entails the appreciable strain
hardening.

On the contrary, one could expect that small strains
(below the yield point) would not cause noticeable
changes in polymer morphology thus obeying the con-
ventional viscoelastic behaviour (say in a framework of
Maxwell model). Nevertheless, it was curious to find
that even in the small strain limit SCP reveals unusual
mechanical response. It becomes apparent in the low

slope of the unloading branch of the stress-strain dia-
gram then leading to the unexpectedly small value of
the residual strain. Preliminary results were recently re-
ported in [10, 11]. It is demonstrated in Fig. 1 on the
example of PP. It is possible to obtain a good fitting of
the loading portion of the diagram within the Maxwell
model (solid line in Fig. 1). However the obtained char-
acteristics cannot be recognized as adequate ones for
the unloading part: the resulted residual strain and the
slope of this curve exceed significantly the experimen-
tal values. In turn, the unloading curve also can be well
fitted but by a weak Maxwell element (the dotted line
in Fig. 1) having rather lower elastic modulus (Eu) and
different viscosity (ηu) then those (El and ηl) esti-
mated at loading. Moreover, in contrast to El and ηl the
characteristics of unloading Maxwell element strongly
depend on the strain value ε̄ at the return point. Other
classical models of viscoelasticity give practically the
same result.
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Figure 1 The loading-unloading diagrams for PP at the fixed strain rate.
Open circles are the experimental data. The upper solid curve is the re-
sultant of fitting of the loading part of the diagram by a “strong” Maxwell
element with El = 1140 MPa, ηlε̇ = 30.2 MPa. The lower solid curve
represents the unloading of the same Maxwell element. The dotted curve
is the fitting of the experimental unloading data by a “week” Maxwell
element with Eu = 399 MPa, ηuε̇ = 38.6 MPa.

Such formal analysis supports an intuitive expecta-
tion that deformation causes changing of certain part
of elements caring the load and thus responsible for
the viscoelastic reaction. Unloading follows the ac-
tive tension. Therefore the slop (modulus) of the corre-
sponding portion of the stress-strain diagram should be
lower.

The similar quality of the small-strain behaviour of
isotactic polypropylene and LDPE was recently ob-
served by Drozdov and Christiansen [12, 13]. Interpret-
ing this phenomenon, the authors have also explored the
idea that a certain portion of deformation elements in-
volved to the active loading becomes excluded in a pro-
cess of the unloading. In contrast to the formal approach
discussed, they have drawn a certain physical picture
considering the semi-crystalline polymer as a network
of amorphous meso-regions linked by entanglements
and crystalline nodes. It was supposed that a portion of
crystalline nodes crashes at unloading. This process re-
sults in a diminution of a number of active meso-regions
leading to the decrease in a value of elastic modulus.
The precise fitting of experimental data has been devel-
oped on the basis of this scenario. There are no doubts
that idea of strain-induced structural evolution is fruit-
ful in the interpretation of the observed phenomenon.
Nevertheless, the proposed model is faced the series of
objections. Three of them seem to be most important.

First, the fitting parameters of [12, 13] depend
strongly upon maximum strain value ε̄, which is the
case of the cited Maxwell model. There is no physi-
cal sense in this result. Second, the crash of crystalline
links was supposed to take place only at the unloading
stage. But the material is exposed to the stretching (not
compression!) by positive forces both at loading and un-
loading. Moreover, the values of the forces are higher
at loading (see Fig. 1). Therefore namely the former
stage should be more efficient in the structural evolu-
tion. The third objection is that it is hardly believed that
sufficient change in structure parameters (in particular,

the number of active meso-regions in [12, 13]) could
occur in the limit of small deformations.

Nevertheless, the definite structural transitions are
believed to accompany the small-strain deformations.
These transformations are likely in the partial loss of
connectivity of clusters of stiff and viscous crystal-
lites reminding the elastic percolation phenomenon.
The stress induced destruction of narrow and there-
fore highly loaded bridges between neighbouring crys-
tallites and/or inside crystallites should be a realistic
reason for this transition. The local transformation of a
small portion of stiff and plastic crystalline component
(CC) into the soft and highly elastic amorphous compo-
nent (AC): CC→AC, which entails loss of connectivity
of crystalline domains, can alter mechanical response
of semi-crystalline polymers even at small strains.

The paper is organized as follows. Experimental data
on stress-strain diagrams of uniaxial tension for low
density polyethylene (LDPE) and polypropylene (PP)
will be demonstrated and discussed in Section 4. It will
be shown that an irregular unloading behaviour is ob-
served even in a limit of small deformations (the maxi-
mum strain does not exceed the yield point). To interpret
and describe this phenomenon, three one-dimensional
(1D) constitutive models are developed. Each of them
takes into account a certain type of a strain-induced
evolution of polymer structure and enables to provide
sufficiently good fitting of the experimental diagrams.

The first model (Section 3.2.1) admits changes of the
modulus, E (cr), and the plastic ability, χ (cr) (the value
inverse to viscosity, χ = 1/η) of a CC. But this model
does not include CC → AC transformation due to the
strain-induced transformation of crystallites as well as
links between them. Three negative consequences of
this model will be demonstrated. The first one is in unre-
alistically large variations of E (cr) and χ (cr) in a process
of deformation, which arise with attempts to get a satis-
factory description of experimental data. Second, fitting
parameters are found to depend on maximum strain ε̄

reminding features of the approaches discussed above.
Third, the model predicts an essential drop of E (cr) con-
tradicting the strain hardening of stretched polymers
[4–9, 14, 15].

The second model (Section 3.2.1) includes the same
constitutive equations for CC and AC as the first one
but admits additionally the partial transformation of
crystallites to amorphous phase. This transformation
is assumed to result in change of crystallinity degree
without qualitative modification in the morphology of
crystallite clusters. The introducing of the strain in-
duced local destruction of crystalline phase makes it
possible to remove unrealistic diminution of E (cr) of
the previous version. However, the other negative con-
sequences still remain. In particular, the large decrease
in the crystallinity degree should be assumed to get a
sufficient fitting.

The evident progress in understanding of physical
origin of non-conventional mechanical behaviour of
semi-crystalline polymers is given by the third model
(Section 3.2.2). The key point of this model is the as-
sumption that the deformation induced transformation
of CC results in the structural transition, which is in
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a loss of connectivity in clusters of crystallites. It is
shown that this constitutive approach is able to explain
the observed small-strain loading-unloading behaviour
of PP and LDPE with realistic evolution of mechanical
and structural characteristics of these materials.

2. Experimental procedure
Isotactic polypropylene, PP, (Novolen 1100L) and low
density polyethylene, LDPE, were supplied by BASF
(Targor). ASTM dumbbell specimens were injection
moulded with length 148 mm, width 13 mm and thick-
ness 3.15 mm. Uniaxial tensile tests were performed
at room temperature on a testing machine DELTALAB
DN 30 equipped with electro-mechanical sensors for
the control of longitudinal strains in the active zone of
samples. The tensile force was measured by a standard
load cell.

PP and LDPE specimens were stretched with a fixed
cross-head velocity corresponded to initial strain rates
ε̇ = 8.3 × 10−3 s−1 and ε̇ = 5.7 × 10−4 s−1, respec-
tively, up to the unloading strain, ε̄, and then unloaded
with the same cross-head speed to the zero stress. The
chosen cross-head speeds ensure nearly isothermal ex-
perimental conditions.

Any series of experiments consisted of three-five
tests with return strain values ε̄ = 0.032, 0.053, 0.072,
0.094 and 0.106 for PP and ε̄ = 0.031, 0.061 and 0.09
for LDPE. Each measurement was carried out on a new
sample. The strains interval was chosen below the yield
stresses, which are of the values εy = 0.13 and 0.12 for
a PP and LDPE, respectively. Such interval can be re-
garded as small strain region.

3. Modelling of small-strain response of
semi-crystalline polymers

3.1. Constitutive equation for crystalline
and amorphous components

Multi dimensional constitutive modelling of semi-
crystalline polymers is developed intensively recent
years [see, for example, [4–9, 14–17]. The coupling be-
tween polymer texture and its mechanical response is
one of the most important features of approaches pro-
posed. The only one mode of deformation of PP and
LDPE, namely the low rate uniaxial tension below the
yield point, is analyzed in this paper. This mode is ac-
companied by orientation of crystallites, which, in turn,
results in the strain hardening and diminution of plastic
ability. In simplified 1D models reorientation processes
will be taken into account just explicitly by introducing
an increase of modulus, E (cr), along with decrease of
plastic ability, χ (cr), of crystallites in course of defor-
mation. The rates of variation of these characteristics
are supposed to be proportional to the stress applied to
the crystallites:

Ė (cr) = kEσ (cr) E (cr), (1)

χ̇ (cr) = −kχσ (cr)χ (cr). (2)

These rates are proportional to values of the correspond-
ing parameters which ensure the expected tendencies

in evolution of modulus and plastic ability along with
conservation of their sign.

The small-strain limit justifies an additive represen-
tation of CC total strain, ε(cr), in terms of elastic, ε

(cr)
e ,

and plastic, ε
(cr)
p , components

ε(cr) = ε(cr)
e + ε(cr)

p . (3)

Particularly, Equation 3 prompts that the stress in the
crystalline phase is produced only by elastic strain:

σ (cr) = E (cr)ε(cr)
e , (4)

The dependence of the plastic strain rate for CC upon
the stress applied is also approximated by a linear law

ε̇(cr)
p = χ (cr)σ (cr) (5)

and is characterized by a plastic ability, χ (cr).
Similarly to assumptions of [4–9, 14–17], the amor-

phous phase of SCP is supposed to be in a rubber-like
state. It means that (i) elastic moduli of AC are much
smaller than that of CC (Young modulus, particularly
E (am) � E (cr)) and (ii) deformation is reversible in this
phase. For the 1D version applied to a small strain case
linear algebraic coupling

σ (am) = E (am)ε(am) (6)

serves as a constitutive approximation.
Equations 1–6 will be used to derive three constitu-

tive models describing mechanical response of SCP in
following sections.

3.2. Structural models and constitutive
equations for semi-crystalline polymers

Obviously, the morphology of the SCP essentially de-
termines its mechanical behaviour. Several realistic and
hypothetic multidimensional structural models were
suggested [16, 17] and their ability to simulate defor-
mation behaviour of the material was analyzed. This
study is restricted by the 1D approach. Nevertheless,
certain important conclusions of the multidimensional
representations are included into the present constitu-
tive modelling.

3.2.1. The perfect mixture model
The coincidence of displacements and, hence, of to-
tal strains in crystalline and amorphous phases at each
point is supposed in this approach:

ε = ε(am) = ε(cr) = ε(cr)
e + ε(cr)

p . (7)

In the 1D version it can be represented as a parallel
connection of c crystalline and (1 − c) of amorphous
elements (Fig. 2). The additive law for stresses

σ = cσ (cr) + (1 − c)σ (am). (8)

corresponds to this connection.
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Figure 2 The 1D representation of a perfect mixture model. Widths of
rectangular boxes depict volume fractions, c and 1 − c, respectively.

The first constitutive model supposes to keep fixed
the SCP structure, i.e., (i) the crystallinity degree, c,
and (ii) a homogeneous distribution (perfect mixture)
of crystalline and amorphous phases both at initial and
deformed stages. Equations (1)–(8) form the system of
constitutive relations:



ε̇
(cr)
e = ε̇ − χ (cr) E (cr)ε

(cr)
e ,

Ė (cr) = kE E (cr)ε
(cr)
e ,

χ̇ (cr) = −kχχ (cr) E (cr)ε
(cr)
e ,

σ = cE (cr)ε
(cr)
e + (1 − c)E (am)ε,




ε
(cr)
e

∣∣
t=0 = 0,

E (cr)
∣∣
t=0 = E (cr)

0 ,

χ (cr)
∣∣
t=0 = χ

(cr)
0 .

(9)

The next approach is also based on the assumption of
perfectly mixed components. It admits additionally the
partial CC → AC transformation obviously accompa-
nied by a decrease in a crystallinity degree c remaining
in the framework of the same spatial arrangement of
phases (the approximation of perfect mixture). The rate
of a single crystallite transformation is supposed to be
proportional to a stress applied. Thereby the kinetics of
the transformation should be described as

ċ = −kcσ
(cr)c. (10)

Joining Equation 10 with the system (9) we obtain
the second constitutive model:



ε̇
(cr)
e = ε̇ − χ (cr) E (cr)ε

(cr)
e ,

Ė (cr) = kE E (cr)ε
(cr)
e ,

χ̇ (cr) = −kχχ (cr) E (cr)ε
(cr)
e ,

ċ = −kccE (cr)ε
(cr)
e ,

σ = cE (cr)ε
(cr)
e + (1 − c)E (am)ε,




ε
(cr)
e

∣∣
t=0 = 0,

E (cr)
∣∣
t=0 = E (cr)

0 ,

χ (cr)
∣∣
t=0 = χ

(cr)
0 ,

c|t=0 = c0.

(11)

3.2.2. Simulation of a connectivity
transition

The gradual evolution both of mechanical and struc-
tural parameters of the materials can describe notice-
able changes in a deformation response only being ac-
companied by noticeable changes of these parameters
(see the next section). However, such changes are not
realistic at small strain tests. The essential changes in
properties can be caused by small variations of param-
eters only if these variations lead to qualitative trans-
formations of morphology. Loss of connectivity by a

cluster of crystallites as a result of rearrangement of
CC seems to be the most realistic transition. In order to
justify an alternative (to the second approach) way of
the CC → AC transformation it makes sense to consider
the chess-like disposition of crystallites surrounded by
amorphous phase represented in (Fig. 3, see also [17]).
The dark and light regions correspond to crystalline
(CC) and amorphous (AC) components of SCP, respec-
tively. The relative area of the dark regions coincides
with the crystallinity degree, c.

CC → AC transformations are depicted in Fig. 3 by a
simple diminution of crystallites dimensions ((a) → (b)
and (c) → (d)). These two transformations differ in an
initial crystallinity degree, c, and material geometry:
SCP with disconnected crystallites is shown in Fig. 3a
(low c) and a case of an existence of connected cluster of
crystallites (sufficiently high c) corresponds to Fig. 3c.
The second transformation, (c) → (d), in contrast to the
first one is accompanied by the critical phenomenon:
violation of connectivity of the crystallite cluster along
the stretching direction.

Fig. 3e schematically reflects the fact that this
percolation-like transition should occur in reality not
by the simultaneous diminution of crystallites size, but
by the destruction only of narrow and, hence, mostly
stressed regions, surrounded on Fig. 3c by circles.
CC → AC transformation of these regions also pro-
vides a similar disconnection effect, but by much less
(compared to (d)) diminution in c.

Obviously, the chess-like representation of the struc-
ture is extremely simplified compared to realistic multi
scale morphology of SCP. Nevertheless, this scheme
includes two important advantages with respect to a
perfect mixture model. The first one is simulation of
spatial separation of crystalline and amorphous phases.
The second is the ability of the chess-like model to take
into account the connectivity of crystalline or amor-
phous components. The strong influence of this feature
on the mechanical behaviour of heterogeneous media
is qualitatively understandable and it was justified in
numerous papers (see, for example, [18–20] devoted to
elasticity of disordered discrete systems and [21, 22]
for continuum composites). Actually, if a binary com-
posite consists of randomly distributed stiff and soft
elements (domains) then at small fraction c of the stiff
regions they are disconnected and, hence, the soft-like
response of the system takes place. On the contrary, the
stiff-like behaviour is expected if c exceeds a percola-
tion threshold ccr.

In spite of that the chess-like model represents a reg-
ular structure, it also obeys the connectivity transition
with the threshold ccr = 0.5: the crystallites are discon-
nected at c < 0.5 (see Fig. 3a, b and d), and connected if
c > 0.5, (Fig. 3c). In the second perfect mixture model
a stress-induced transformation of crystallites does not
include violation of connectivity. This fact may be ex-
pressed in terms of the chess-like structure as (a) → (b)
transformation of Fig. 3. It corresponds to the case of
c < ccr and takes into account just a diminution of
crystallite sizes.

Our third constitutive approach includes transitions
like (c) → (d) or (c) → (e) of Fig. 3. The essence of this
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Figure 3 Schematic representation of a chess-like structure of SCP: the initial morphologies (a), (c), and (f) transform to the hypothetic structures
(b), (d), (e) or (g) as a result of stress-induced transformation of crystallites (the dark regions).

model is in taking into account the loss of connectivity
between crystallites. It becomes apparent with pene-
tration of a newly formed amorphous phase (N) in the
overstrained area between neighbouring crystallites. In
the framework of the 1D approach this fact may be ex-
pressed as a serial CC-N connection shown in Fig. 4b
and c.

In this paper we will not concern the phenomenon of
strain recovering observed after unloading. This effect
consists in almost complete elimination of the residual
strains due to the elasticity of the amorphous phase and
processes of recrystallization. It takes much more time

Figure 4 1D simulation of connectivity-disconnectivity transition in de-
formation process: (a) is the initial state of SCP with connected CC; (b)
represents a newly formed amorphous phase N between neighbouring
crystallites appearing during deformation; (c) is the simplified version
of scheme (b) neglecting a parallel AC branch.

compared to the duration of the loading-unloading ex-
periment. In our 1D description this recovering is driven
by the parallel AC element in Fig. 4b. Taking into ac-
count that the amorphous phase is a soft (E (am) � E (cr))
we may neglect it in simulation of loading-unloading
processes within the third model. It simplifies calcu-
lations, which will be done in the framework of serial
connection presented in Fig. 4c.

The serial connection of a newly formed portion, (1−
c), of amorphous component with the rest portion, c,
of crystalline component requires the replacement of
Equations 7 and 8 for strains and stresses, corresponded
to a parallel connection, by the following ones:

ε = cε(cr) + (1 − c)ε(am)

= c
(
ε(cr)

e + ε(am)
e

) + (1 − c)ε(am), (12)

σ = σ (cr) = E (cr)ε(cr)
e = σ (am) = E (am)ε(am). (13)

It gives the strain of amorphous part N and the plastic
constituent of CC:

ε(am) = E (cr)

E (am)
ε(cr)

e , (14)

ε(cr)
p = 1

c
ε −

(
1 + 1 − c

c

E (cr)

E (am

)
ε(cr)

e . (15)
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Differentiating Equation 15 and taking into account
Equation 5 for the plastic strain rate of crystallites we
obtain:

ε̇(cr)
p = χ (cr) E (cr)ε(cr)

e = ε̇

c
+ ċ

E (cr)ε
(cr)
e − E (am)ε

c2 E (am)

− ε̇(cr)
e

(1 − c)E (cr) + cE (am)

cE (am)
− Ė (cr) (1 − c)ε(cr)

e

cE (am)

(16)

Extracting the rate of elastic strain ε̇
(cr)
e from Equa-

tion 16 and substituting it as the first equation of the
system (11) along with the replacement of the last equa-
tion of (11) by the relation (13) for the stress we arrive
to the 1D version of constitutive model including an
idea of the strain-induced changes of connectivity of
SCP morphology:




ε̇
(cr)
e =

ε̇E (am) + ċ
c (E (cr)ε

(cr)
e − E (am)ε) − Ė (cr)(1 − c)ε(cr)

e − χ (cr) E (cr) E (am)cε(cr)
e

(1 − c)E (cr) + cE (am)
,

Ė (cr) = kE E (cr)ε
(cr)
e ,

χ̇ (cr) = −kχ E (cr)ε
(cr)
e ,

ċ = −kccE (cr)ε
(cr)
e ,

σ = σ (cr) = E (cr)ε
(cr)
e (17)

(the initial conditions are the same as in (11)).

4. Results and discussion
The experimental stress-strain diagrams of the low rate
tension and unloading of PP and LDPE are represented
in Figs 5 and 6, respectively. The PP is more rigid than
LDPE showing the larger level of stresses at the same
strain values. From these data we can see that both of
the polymers demonstrate series of common features.
Primary it concerns unexpectedly small slopes of un-
loading branches of the diagrams along with values of
residual strain compared to those predicted by conven-
tional models (see also Fig. 1). The analysis of this
phenomenon is carried out here on the basis of three
constitutive models proposed in the previous section.

The first evaluation of fitting of experimental data
shows that the first and the second models lead to the
almost coincident curves, which are not distinguish-
able in Figs 5a and 6a. The third constitutive model
provides the noticeably better fitting (Figs 5b and 6b)
followed by a physically reasonable changing of poly-
mer characteristics (see below). The results were found
to provide the same peculiarities for PP and LDPE. We
restrict further discussion by polypropylene only. The
corresponding plots are given in Figs 7–9.

The variations of relative Young modulus E (cr)/E (cr)
0

of the crystalline component of PP in of loading-
unloading processes, given by the first constitutive
model, are represented in Fig. 7 (E (cr)

0 is the initial value
of the modulus). Recall that this approach supposes sta-
bility of morphology of semi-crystalline polymer and,
hence, conservation of crystallinity degree c during de-
formation. Analysis of these plots reveals three non-
realistic features inhere in the first model.

Figure 5 Experimental and theoretical loading-unloading stress-strain
diagrams of PP at the fixed strain rate (ε̇ = 8.27×10−3 s−1) for different
values of the returned points (ε̄ = 0.032 (◦); ε̄ = 0.054 (•); ε̄ = 0.072
(�); ε̄ = 0.094 (�); ε̄ = 0.106 (∗)): (a) fitting with the first and second
constitutive models, (b) fitting with the third constitutive model. The
tests were carried out at room temperature.

1. In order to reach an acceptable fitting of the exper-
imental data this model provides a great variation in the
modulus (about five times for ε̄ = 0.106). The plastic
ability of CC is found to change even more (we do not
present these curves here to save a space). These re-
sults could not be accepted because of their unphysical
content: it is hardly believed that the small-strain defor-
mations could result in so great variations in a polymer
texture and, hence, in material characteristics.

2. The material’s parameters should not depend on
the returned point, ε̄. However, Fig. 7 clearly indicates
that the first model possesses this unrealistic feature.

3. The uniaxial tension should induce orientation of
crystallites in the drawing direction. At least it should
cause the strain hardening of SCP [4–9, 14, 15]. But
Fig. 7 demonstrates an opposite behaviour of the Young
modulus. This contradiction follows from the attempt
to get fitting (Fig. 5a) of the abnormally low slopes of
the unloading branches of the experimental stress-strain
diagrams under the assumption of the fixed morphol-
ogy. As a result it gives a diminution of effective elastic
modulus of CC.

The second constitutive approach is free from the last
defect. It admits variation in SCP morphology due to the
stress-induced transformation of crystallites. Including
this feature (see Equation 7) into the constitutive model
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Figure 6 Experimental and theoretical loading-unloading stress-strain
diagrams of LDPE at fixed strain rate (ε̇ = 5.66×10−4 s−1) for different
values of the returned points (ε̄ = 0.031 (◦); ε̄ = 0.061 (•); ε̄ = 0.09
(�)): (a) fitting with the first and second constitutive models, (b) fitting
with the third constitutive model. The tests were carried out at room
temperature.

Figure 7 Relative Young moduli E (cr)/E (cr)
0 of PP crystallites predicted

by the first constitutive model as functions of tensile strain at loading
and unloading. The curves correspond to the same returned strains ε̄ as
in Fig. 5.

(Equations 11) makes it possible to compensate the de-
crease in the effective modulus by transformation of the
stiff crystallites into the soft amorphous component. As
a consequence of this modification, the Young modulus
E (cr) of CC can be kept fixed or even slightly growing
at tension. We do not show this plot because variation
is small and is not seen.

The variations of relative material parameters
χ (cr)/χ

(cr)
0 and c/c0, predicted by the second constitu-

tive model, are shown in Fig. 8 (χ (cr)
0 and c0 are the ini-

tial value of plastic ability and the crystallinity degree).

Figure 8 Variations of material parameters of PP crystallites predicted
by the second constitutive model as a functions of tensile strain at loading
and unloading: (a) relative plastic ability, χ (cr)/χ

(cr)
0 , (b) relative crys-

tallinity degree c/c0. The curves correspond to the same returned strains
ε̄ as in Fig. 5.

Diminution in these characteristics with deformation
coincides qualitatively with the anticipated regularities
of strain-induced evolution of the SCP texture. Nev-
ertheless, the second model also demonstrates the rest
of drawbacks listed above. First, the changes of these
parameters are incredibly large for a small strain limit.
Second, the results given by this model are still depen-
dent on the strain ε̄ at the returned point.

In contrast to the second approach, the third con-
stitutive model takes into account penetration of the
newly formed amorphous phase between the neigh-
bouring crystallites. This serial connection (Fig. 4c) re-
flects the loss of connectivity in the crystallite clusters.
The application of this model gives the appreciably bet-
ter fitting of experimental data (see Fig. 5b) followed
by variations in relative plastic ability χ (cr)/χ

(cr)
0 and

crystallinity degree c/c0 shown in Fig. 9.
The obtained results demonstrate undoubtedly that

the third constitutive approach, supposing the loss of
connectivity by crystalline component t is much more
successful than the previous ones. The excellent fitting
is obtained along with a slight increase in crystallite
elastic modulus. The plastic ability (Fig. 9a) and the
degree of crystallinity (Fig. 9b) exhibit relatively small
diminution. It is seen from these figures that the calcu-
lated parameters are almost independent of position of
the returned point, ε̄: the unique variation of the mate-
rial characteristics is obtained on the basis of the third
constitutive model.
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Figure 9 Variations of material parameters of PP crystallites predicted
by the third constitutive model as a functions of tensile strain at loading
and unloading: (a) relative plastic ability χ (cr)/χ

(cr)
0 , (b) relative crys-

tallinity degree c/c0. The curves correspond to the same returned strains
ε̄ as in Fig. 5.

This important result is supplied by the physical un-
derstanding of the observed phenomenon. Emphasise
that it is caused exclusively due to critical changes
in SCP topology resulting connectivity-disconnectivity
transitions. We claim that the experimentally found
effects of unconventional unloading behaviour of PP
and LDPE under the small-strain deformations cannot
be understood without taking into account the critical
changes in the structure.

5. Conclusions
The unconventional loading-unloading behaviour of PP
and LDPE below the yield point was experimentally
found. The essence of the phenomenon is in low slopes
of unloading portions of deformation diagrams and val-
ues of residual strains. These observations point that
certain evolution of polymer morphology accompanies
the drawing process. Otherwise one would expect the
linear viscoelastic response of semi-crystalline poly-
mers in a limit of small strains.

Three structure sensitive constitutive approaches are
developed and analyzed for the understanding of the
phenomenon. Each of them considers semi-crystalline
polymer as a binary blend of crystalline and amorphous
components. The mixture of these components is sup-
posed to be perfect in the first and second models. On
the contrary, phases are assumed to occupy separated

domains in the third approach. Connectivity of these
domains can be violated in a deformation process.

We assumed that reversible elastic constitutive rela-
tions describe mechanical response of the amorphous
component. The crystallites are much stiffer and ca-
pable for the plastic deformation and reorientation. It
leads to a strain hardening and decreasing in plastic
ability under uniaxial drawing.

In contrast to the first model, the second and third
ones admit stress-induced CC → AC transformation.
The difference between these approaches implies that
the second model is restricted by the conservation of
spatial morphology of SCP (perfect mixture) while the
third one takes into account loss of connectivity in crys-
tallite clusters.

It is found that a reasonable fitting of the stress-strain
diagrams can be obtained with each approach (the best
one is obtained by the third model). However, the physi-
cally admissible variations of mechanical (elastic mod-
ulus and plastic ability of crystallites) and structural
(crystallinity degree) characteristics, necessary for a
good fitting, are achieved only in the case when the
connectivity transitions are admitted. The variations
predicted by the first and second models are too large to
be considered as realistic ones at small deformations.
Moreover, they are dependent of the values of return
strains. The first approach also leads to a diminution
of crystallite elastic modulus at drawing, which con-
tradicts with the well-known phenomenon of the strain
hardening.

We conclude the paper by the following remark. It
is very important to develop the proposed constitutive
models by 2D and 3D simulations. The 1D version is
restricted by a uniform diminution of crystalline do-
mains starting from the CC – AC interface (transfor-
mations (a) → (b), (c) → (d) are shown in Fig. 3 by
simultaneous diminution in the crystallites sizes). Such
uniformity is caused by the same stress condition for ev-
ery crystallite, which is provided by a one-dimensional
simulation. Actually, the local transformation of over-
strained narrow regions of crystallites ((c) → (e) trans-
formation in Fig. 3) seems to be much more realistic.
Such transformation implies a connectivity transition,
caused by a very small change in c, even smaller than
that found by the third approach of a given simulation.
All the technique and algorithms are already developed
(see [17]) and the mentioned multidimensional simu-
lation will be performed in the nearest future. Loss of
crystalline connectivity can also occur following the
mechanism of local crystallographic slip (Fig. 3f and
g). Its realization does not require any change in c at
all.1

Appendix: Algorithm of the fitting procedure
Fitting of measured stress-strain diagrams was per-
formed using the unique algorithm for every ap-
proach, including the formal description on the
basis of Maxwell viscoelastic element in Fig. 1.

1The last mechanism of the loss of crystal connectivity was proposed
by the Referee of the paper. Authors are greatly thankful him for this
advise.
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The algorithm of fitting is based on the following
procedure. The experimental data are given by a
set of n(ex) points, (ε(ex)

j , σ
(ex)
j ) on the strain-stress

plane ( j = 1, 2, . . . , n(ex)). Stress values at same
strains, σ

(th)
j = σ (th)(ε(ex)

j ) can be calculated using one
or other model. Particularly, well-known analytical
formula

σ (th)(ε) = σ̄ exp

(
− p1

p2ε̇
(ε − ε̄)

)

+ ηε̇

(
1 − exp

(
− p1

p2ε̇
(ε − ε̄)

))
(18)

where parameters correspond to the stiffness, p1 = E ,
and viscosity, p2 = η, of the Maxwell element; (ε̄, σ̄ ) is
the given point of the strain-stress curve (for example,
the return point); ε̇ is a fixed strain rate.

In the case of the constitutive equations considered
in the paper the values of σ

(th)
j depend on a larger num-

ber of material parameters. For the first model we have:
p1 = E (cr)

0 , p2 = E (am), p3 = χ
(cr)
0 , p4 = kE, p5 = kχ .

In the case of the second and third ones two parame-
ters, p6 = c0, and p7 = kc, should be added to this set.
These parameters, p1, p2, . . . , pm, were seeking from
the condition of minimum of the square deviation be-
tween theoretical and experimental stresses:

U =
∑

j

(
σ

(th)
j − σ

(ex)
j

)2
. (19)

The following iteration procedure was used to fulfill
this condition. The calculated stresses σ

(th)
j and, hence,

the square deviation U , are the functions of the seeking
parameters:

U = U (p1, p2, . . . , pm)

=
∑

j

(
σ

(th)
j (p1, p2, . . . , pm) − σ

(ex)
j

)2
. (20)

An key point of the iteration procedure consists in the
replacement of the function U (p1, p2, . . . , pm) by its
expansion Ũ (p1, p2, . . . , pm) in the Taylor series up to
squire terms:

U (p1, p2, . . . , pm) ≈ Ũ (p1, p2, . . . , pm)

= U
(

p(s)
1 , p(s)

2 , . . . , p(s)
m

)

+
∑

k

∂U
(

p(s)
1 , p(s)

2 , . . . , p(s)
m

)
∂pk

(
pk − p(s)

k

)

+ 1

2

∑
k,l

∂2U
(

p(s)
1 , p(s)

2 , . . . , p(s)
m

)
∂pk∂pl

× (
pk − p(s)

k

)(
pl − p(s)

l

)
(21)

Each iteration step (p(s)
1 , p(s)

2 , . . . , p(s)
m ) → (p(s+1)

1 ,

p(s+1)
2 , . . . , p(s+1)

m ) was made by solving the system of
linear algebraic equations corresponding to the zero

gradient of Ũ (p1, p2, . . . , pm):

∑
l

∂2U
(

p(s)
1 , p(s)

2 , . . . , p(s)
m

)
∂pk∂pl

p(s+1)
l

=
∑

l

∂2U
(

p(s)
1 , p(s)

2 , . . . , p(s)
m

)
∂pk∂pl

p(s)
l

− ∂U
(

p(s)
1 , p(s)

2 , . . . , p(s)
m

)
∂pk

. (22)

The initial values (p(0)
1 , p(0)

2 , . . . , p(0)
m ) of the material

parameters were chosen as close as possible to the seek-
ing minimum.

If σ (th) is represented analytically (Equation 18), the
first and second derivatives of U (p1,p2,. . . ,pm) figur-
ing in Equation 22 can be calculated directly. But it is
not the case of systems of constitutive Equations 10, 11
and 17. The stresses corresponding to these models (the
last relation of systems (10), (11) and (17), respectively)
depend on the set of parameters in two ways, explic-
itly and implicitly: σ

(th)
j = σ

(th)
j (p1, . . . pm; y1, . . . yn).

The implicit dependence is given through y1 = ε
(cr)
e ,

y2 = E (cr), y3 = χ (cr) and y4 = c, which will be called
further as state functions. y4 is not included into the
system (10), because the structure is supposed to be
fixed in the corresponding model. So, we have n = 3
for the first approach and n = 4 for the second and
the third ones. The state functions can be found only
by numerical integration of corresponding systems of
ordinary differential equations.

In turn, the state functions depend upon the seek-
ing parameters p1, p2, . . . , pm by two different ways,
which do not intersect. That is why the total set of pa-
rameters can be divided into two groups. For the first
group the way is defined by an explicit and implicit de-
pendence of the right-hand sides of differential equa-
tions:

ẏl = fl(p1, . . . pm; y1, . . . yn). (23)

It is a case of the parameters p4 = kE and p5 = kχ .
Quantities, which determine initial values of state func-
tions, p1 = E (cr)

0 , p3 = χ
(cr)
0 , and p6 = c0, form the

second group.
Algorithm of minimization supposes unique type of

seeking parameters. That is why the parameters of
the second group (let us keep in mind one of them,
pr = yq|t=0, for instance) were transformed into the
first group in the result of the replacement of the cor-
responding state function, yq, by the relative value,
ŷq:

yq → ŷq = yq

pr
. (24)

The new state function satisfies the fixed initial condi-
tion and new right-hand side of the differential equation
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becomes dependent of pr:(
dyq

dt
= fq, yq|t=0 = pr

)

→
(

dŷq

dt
= f̂ q = fq

pr
, .ŷq|t=0 = 1

)
. (25)

First, yki = ∂yk∂yk/∂pi, and second, ykij = ∂yk/

∂pi∂pj derivatives of the state functions, y1,. . . ,yn, were
included into the corresponding system of differential
equations:

ẏki = fki = ∂ fk

∂pi
+

∑
s

∂ fk

∂ys
ysi,

ẏkij = fkij = ∂2 fk

∂pi∂pj
+

∑
s,t

∂2 fk

∂ys∂yt
ysi ytj

+
∑

s

(
∂2 fk

∂pi∂ys
ysj + ∂2 fk

∂pj∂ys
ysi + ∂ fk

∂ys
ysij

)

(26)

with the zero initial conditions. The extended systems
were integrated numerically by Runge-Kutta method
and calculated values of the state functions and their
derivatives were substituted into Equation 22.
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